Hall Ticket Number:											

VIGNAN'S INSTITUTE OF MANAGEMENT AND TECHNOLOGY FOR WOMEN

(An Autonomous Institution)

I-B.Tech.-I-Semester Regular Examinations, February-2025

MATRICES AND CALCULUS

(Common for ECE, CSE, IT, CSM, CSD)

Time: 3 Hours

Max. Marks: 60

[10Marlza]

VR24

(Answer All Questions)

Note: Question paper consists of Part-A & Part-B.

- i) **Part-A** for 10M, ii) **Part-B** for 50marks
- **Part A** is compulsory, consists of 10 sub questions from all units carrying equal marks.
- **Part-B** consists of **10 questions** (numbered from 2 to 11) carrying **10marks** each. From each unit there are 2 questions and the students should answer one of them. Hence the student should answer **5 questions** from **Part-B**.

PART- A

PART-A

		LIOmarks
1a)	For which value of ' λ ' the rank of the matrix $A = \begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ 1 & 13 & 10 \end{bmatrix}$ is 2	[1]
b)	Define echelon form.	[1]
C)	If the Eigen values of A are 2, 4 and determinant of A is -24, then find Trace(A)	[1]
d)	Find the Eigen values of A^{-1} where $A = \begin{bmatrix} -5 & 5 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 11 \end{bmatrix}$	[1]
e)	State Cauchy Mean value theorem	[1]
f)	Find the value $\beta(4,5)$	[1]
g)	Define Stationary point	[1]
h)	If $z = u^2 + v^2$ and $u = at^2$, $v = 2at$ then find $\frac{dz}{dt}$	[1]
i)	Evaluate $\int_{1}^{2} \int_{x}^{x^{2}} x dy dx$	[1]
j)	Evaluate $\int_{1}^{2} \int_{2}^{3} \int_{3}^{4} xyz dxdydz$	[1]

PART-B

PART-B

[50Marks] 1 -30 1 0 1 1 2. a) Determine the rank of the matrix A **5M** 3 1 0 2 1 1 -20 Solve the system of equations using Gauss -Seidel iterative method x +b) 5M 10y + z = 6, 10x + y + z = 6, x + y + 10z = 6OR

3. a) Show that the only real number λ for which the system $x + 2y + 3z = \lambda x$; 3x + y + 2z **5M** = λy ; $2x + 3y + z = \lambda z$ has non-zero solution is 6 and solve them when $\lambda = 6$

b)	Use Gauss Jordan Method to find the inverse of a matrix $A = \begin{bmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$	5M						
	Unify the Color Hamilton theorem for the matrix							
4.	$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence compute A^{-1} , also find the matrix represented by $A^8 - 5A^7 + $	10M						
	$7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I.$							
5. a)	If λ is an eigen value of A then $\frac{ A }{\lambda}$ is an eigen value of <i>Adjoint A</i>	4M						
	Find the matrix D which transforms the matrix							
b)	$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ to the diagonal form.	6M						
6. a)	Using mean value theorem for $0 < a < b$, prove that $1 - \frac{a}{b} < \log \frac{a}{b} < \frac{b}{a} - 1$ and deduce	5M						
·	that $\frac{1}{6} < \log \frac{6}{5} < \frac{1}{5}$							
b)	Evaluate $\int_0^1 x^4 [\log \frac{1}{x}]^3 dx$	5M						
7. a)	Verify Rolle's theorem for the following function							
1. aj	$f(x) = 2x^3 + x^2 - 4x - 2$ in $[-\sqrt{2}, \sqrt{2}]$	4M						
b)	Show that $\int_0^a (a-x)^{m-1} x^{n-1} dx = a^{m+n-1} \beta(m,n)$	6M						
8. a)	If $z = f(x + ct) + \phi(x - ct)$, prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$	5M						
b)	Show that the functions $u = x\sqrt{1-y^2} + y\sqrt{1-x^2}$, $v = sin^{-1}x + sin^{-1}y$ are functionally	5M						
	dependent OR							
9. a)	A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction	10M						
10.a)	Change the order of integration and hence evaluate $\int_0^1 \int_x^{\sqrt{2-x^2}} \frac{x}{\sqrt{x^2+y^2}} dx dy$.	10M						
	OR							
11.a)	OR Find the area enclosed by the parabola $y^2 = 4ax$ and the lines $x + y = 3a, y = 0$ in the first quadrant Evaluate the integral $\int_0^{4a} \int_{\frac{y^2}{2}}^{\frac{y^2-y^2}{2}} dxdy$ by changing into polar coordinates.	5M						

VMTW